
Anisotropic critical phenomena in parabolic geometries: the directed self-avoiding walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1992 J. Phys. A: Math. Gen. 25 L127

(http://iopscience.iop.org/0305-4470/25/3/008)

Download details:

IP Address: 171.66.16.59

The article was downloaded on 01/06/2010 at 17:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/25/3
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A Math. Gen. 2s (19%) L127-LI34. Printed in the UK 

LEmER TO THE EDITOR 

Anisotropic critical phenomena in parabolic geometries: the 
directed self-aydding walk 

Wic 'hrban 
Labamtoire de Physique da Solide, URA CNRS no 155, Univeniti de Nancy I ,  BP239, 
F-54506 Vandaeuvre Ib Nancy CAda, France 

Rmeived 30 September iYYl 

AbslracL The critical behaviour of directed self-avoiding walks is studied on parabolic- 
like systems with a free baundary at I = f C P .  Using a scaling argument, I /C  is 
shown to be a marginal variable when a = u1/v11 = i, i.e. on a parabola. As a 
consequence the direcled walk may display varying local exponents. Such a behaviour 
is indeed observed for restricted walks. This generalizes a result of Cardy showing that 
non-universal behaviour O C C U ~  at cornen for isolropic systems. 

Isotropic systems are known to display non-universal critical behaviour at corners 
[ l 4 ] ,  local exponents varying continuously with the opening angle 8. As shown 
recently [7], this may be linked to the scale invariance of these shapes in the case 
of isotropic systems. In parabolic-like geometries where the boundary is located at 
X ( t )  = f C t n  an isotropic change of scale transforms C into bn-'C where b is 
the dilatation factor. The dimension of C vanishes when a = 1, i.e. in the corner 
geometly, then C = t an  8 /2  is a marginal variable leading to 0-dependent exponents. 

flat surface whereas when a < 1, C decreases and one gets either a line geometry 
or  a cut, depending on the location of the system relative to its boundary. 

These considerations may be extended to the case of anisotropic systems [SI 
for which the correlation length diverges at the critical point with different critical 
exponents in the parallel and perpendicular directions. If  the t-axis of the boundary 

length exponent ull = zul, under an anisotropic change of scale 191 with dilatation 
factors b,, = b" and b, = b, C is changed into 

,In.̂.. wu=n ir > ?, C ~ X W S  titiki ieiiGKgdiZz&a 2nd t k  ~iiikd bchzqioiii is that cjf 2 

defined *have coi!?ddes with the para!!e! dirertia!? of the system with I ...rre!atb!! 

(1) 
C' = bZW-'C 

and marginal behaviour is obtained when U = 1/z. 
In the present work, we check these ideas in the case of the directed self-avoiding 

walk [S, 101 for which z = 2 so that varying exponents are expected inside a parabola. 
Due to the directedness, one cannot get any boundary effect for a walk outside a 
parabola. Although in the following we restrict OurselveS to the ZD problem, similar 
results are expected in higher dimensions. 

0305-4470~f l30127+0~~4 .50  0 I992 IOP Publishing Ltd L127 
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Let us consider a directed walk on a rectangular lattice in the (x,t) plane. At 
each step with At = 7 in the time direction, the walker performs a jump A X  = fa 
towards one of the two nearest sites with the same probability so that the walk is 
restricted and may be also considered as a ID diffusion process. Furthemore the 
walker is assumed to start at the origin (z = 1 = 0) and remains confined inside 
a parabolic-like domain which for convenience we consider to be slightly shifted 
backwards in time 

I.(t)l < X(t)  = C ( t  + o)-. (2) 

The number of N-step walks starting from the origin and reaching x = na at time 
t = N r  may be written as 

NN(O,na) = z N P ( n a , N 7 )  (3) 

where the front factor on the right gives the total number of unconfined walks with 
N steps and P ( z , t )  gives the probability to reach x = n a  without crossing the 
frontier. This probability satisfies the recursion equation 

P ( z , t  + 7) = +[P(x + a , t )  + P(x - a , t ) ]  P ( z . 0 )  = 6*,0 (4) 

with the boundary condition 

P(x,t) = 0 l z l =  X ( t ) .  ( 5 )  

In the continuum limit (a << 1, 7 << 1 ,  a 2 / r  = 1) ,  one gets the diffusion equation 

together with the time-dependent absorbing boundary condition given in (5). 

sees the frontier when 1 >> 1’ = C 2 / ( ’ - z a )  and thc probability distribution tends 
asymptotically to the Gaussian form, namely 

- 
!fi 2 free r z f i a = ~  x*;a!k $(t) = 1 $0 that ~vb,p~p. e \ +hp w n l b m  no !~ngcr ’ 2 .*a- ’’”...... 

P ( z , l )  - - I exp (-g) t > 1 ’ .  J27;i (7) 

This is the behaviour expected from equation (I) since C grows under renormalization 
when a > $ so that the boundary evolves towards a flat surface geometry. 

When a < 1 the boundaly changes the asymptotic behaviour and in order to work 
with constant boundary conditions, it is convenient to introduce the new variable 

X 
y =  ( t+ . r7IG 

leading to the following equation for P( y, t )  
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with absorbing boundary conditions at y = AC. 
In the appendix, scaling arguments are used to get the form of the probability 

distribution. Its leading behaviour at long time when a < f is found to take the 
form 

liz t l - 2 "  

C t *  I ( 8Cz1-2a 
P(r,t)zz -exp 

This asymptotic expression becomes exact in the limit of a strip geometry when 
a = 0. A similar stretched exponential behaviour was previously observed in isotropic 
parabolic systems with relevant boundary effects [7]. 

In the marginal case a = $ the variables separate in (9) and the problem is 
exactly solvable. The diffusion equation becomes 

and looking for P as a product 4 ( t ) $ ( y )  enables us to write down 

( I  + q ) -  d4 = -xz4  
d t  

where we used t h e  new variable z = -y2 /2  in the eigenvalue equation (1%). One 
recognizes Kummer's equation [ l l ]  so that the eigenfunctions are confluent hyper- 
geometric functions. Even solutions ]PI( X z ,  $; z )  must be selected since the initial 
condition introduces a reflection symmetry with respect to the  time axis. These have 
the following z-expansion 

a a ( a +  1)zZ 
l F l ( a , b ; z )  = 1 + - z +  - +  b b ( b + l )  2 !  

4. + l ) ( a +  2)  . . . (  U + IL - 1 )  z" - +  
+ b ( b + I ) ( b + z ) . . . ( b + n - l )  n! 

In order to satisfy the boundary conditions, the eigenvalues A; have to belong to 
a discrete set which, according to (2) and (S), corresponds to zeros of the confluent 
hypergeometric function for z = -Cz /2. They are solutions of the implicit equation 

1 
= 0 .  

The first differential equation (12n) simply yields 

and putting these together, one may finally write 
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C2 

Figure 1. lnvene of the largesl eigenvalue of equation (1%) as a function of the square 
of the marginal parameter C .  

where the coeficients A,(?) have to be chosen to satisfy the initial condition. The 
asymptotic behaviour is governed by the !owest eigenva!ue A; which was studled 
numerically (figure 1). 

Some analytical results may be obtained only in limiting cases. Let us first consider 
the strong curvature limit E = C2/2 - 0. Then, according to (13) and (14) A2 is 
O ( E - ’ )  and introducing U = C2X; = O(1) in (14), one gets cos(&) = O ( E )  so 
that the eigenvalue spectrum reads 

The eigenfunctions are obtained in the same way, leading to 

The completeness relation 

may be used to deduce the coefficients A,rL(7!) satisfying the initial condition 
P(z,0) = 6(z) and the probability distribution behaves as 

(20) 

the asymptotic behaviour being governed by the first term in the eigenvalue expansion, 
namely 
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This is just the result given by (10) when a -+ f if ti-?* is changed into t'-*" - 1 
in the exponential, which amounts to modifying a constant prefactor, in order to get 
a meaningful limit. 

Let us now consider the opposite limit. First, when C is infinite, the boundaly 
condition is satisfied with A; = i since [ l l ]  

l F l ( i , i ; z )  = e *  

which corresponds to the Gaussian distribution 

satisfying the initial condition when the limit 7 + 0 is taken. This is the free diffusion 
result (7) as expected for a walker starting on a surface which is flat in this limit. 
When the curvature is weak ( C  B 1) one may use the r-'-expansion of the confluent 
hypergeometric function 

to find out the leading correction to 4. After some algebra one gets 

where E is the  correction term itself. 
Let us finally turn to the evaluation of the critical exponents. Besides the radius 

of gyration exponents yI = 1 and uI = $, in analogy with thermal critical phenom- 
ena, one defines a bulk susceptibility exponent y which enters into the asymptotic 
behaviour of the total number of N-step directed walks starting from the origin on 
an unlimited lattice, NN - p N  N7-I [XI. Since for the restricted walk, N = t when 
the time is measured in T units, by (3) this can be written as 

so that p = 2 and y = 1. Surface exponents may be defined in a system with a 
straight free surface along the time axis by considering the total number of N-step 
walks starting near the surface at I = 6 

L m N N ( 6 , r ) d z  -pNN7I- I  (27) 

and the number of N-step walks starting and ending near the surface 

" ( 6 , s )  - p N N 7 " - I .  (28) 

Using the Gaussian distribution (7) and the method of images [lo], it is easy to check 
that y1 = i and yll = -? in agreement with the scaling law 2yl -yI1 = y +  vI [XI. I '  
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Now, in the parabolic geometly, one may define two new exponents by considering 
either the total number of N-step walks starting near the tip 

or the number of N-step walks starting near the tip and ending near the boundaly 

NN(O,Cta -6)  - pNNTo1-l. (30) 
Using the analogy with thermal critical phenomena, it may be shown that when 
f 3 a > 0 these exponents satisfy the scaling.law 

since the boundary is asymptotically flat and parallel to the time axis. When a > f 
one evidently gets yo = y = 1 and yol remains undefined since at long time the 

to P ( z , t )  in (16) gives 

Yo - 701 = 71 - 711 (31) 

33.-  ------ _^^^. ..̂  -..- 1.. .L̂  I^__ 1_^1 ^^^^ 1 &L^ I _ ^ . ? _ _  ____. .L~._:__ 
WdllO CilllllUl IGaCIl L l l t :  SUrlaCG. 111 LflG llldrglllal CilaSG, CI = ;, lnt: ICaUlflg WnCIlDUUUfl 

which combines with (3), (16) and (29) to yield 
3 2  yo = 5 - A,. (33) 

The second exponent is obtained in the same way through a first-order expansion of 
the confluent hypergeometric function. Then, by (14) 

and iinaiiy 

Yo1 = ; - A; (35) 
follows in agreement with the scaling law (31). When a < $, by (3) and (lo), the 
connective constant p is given by 

so that p = 2 when a > 0 and due to the exponential decay of the probability 
distribution, yo = yol = -cu. It follows that when C varies from zero to infinity, the 
marginal exponents interpolate between their values below and above a = 3. When 
a = 0, by (36), the connective constant is changed into 

r 2 \  (-a) p = 2exp j37j 

and as a consequence of t h e  one-dimensionality of the system yo = yol = 1. Let 
us mention that doing the calculation with the transfer matrix technique on a lattice 
would give p = 2 c o s ( r / 2 (  C + 1)) instead of (37) but the continuum limit used 
here is valid for a << 1 so that both expressions should be compared in the limit 
C >> 1 where they indeed give the same result. Finally, when a < 0, the systems 
shrinks at long time and according to (36) the connective constant vanishes. 

The author enjoyed long discussions with Ingo Peschel and Ferenc Ig16i about critical 
phenomena in parabolic geometries. 
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Appendix 

As suggested in the introduction the shape of the system may be  considered as a 
perturbation to its critical behaviour in infinite geometry characterized by the scaling 
field 1/C which, according to (l), may be either relevant, marginal or irrelevant 
depending on the sign of its scaling dimension 1 - ZQ.  This allows us to write down 
a scaling ansatz for the probability distribution 

x t b'-'O P ( x,t,- A) = b - ' P  ( b ' b z ' C )  - - 

where the scaling dimensions are those of the unperturbed fixed point. 
With b = Ct" and z = 2 for the directed walk, (Al) translates into 

so that for an irrelevant perturbation, a crossover towards the unperturbed critical 
behaviour occurs at t' = CZ/'-'" and a comparison with (7) shows that, in this case, 
the scaling function behaves asymptotically as a Gaussian 

Furthermore (A2) can be inserted into (9) to get the asymptotic behaviour of the 
probability distribution in the case of a relevant perturbation. The scaling function 
then satisfies 

When a < $, v grows in time and the leading behaviour is obtained by keeping the 
two first terms on both sides to get 

which becomes exact in the strip geomeuy when a = 0. With f - + ( U ) ~ ( V ) ,  @ 
even in U and vanishing for U = 1, we find 

Together with (M) this gives a properly normalized exact expression when a = 0 
whereas the term m = 0 in the eigenvalue expansion provides the leading contribu- 
tion (10) to the probability distribution. 
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